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We consider Glauber dynamics of classical spin systems of Ising type in the limit
when the temperature tends to zero in finite volume. We show that information
on the structure of the most profound minima and the connecting saddle points
of the Hamiltonian can be translated into sharp estimates on the distribution of
the times of metastable transitions between such minima as well as the low lying
spectrum of the generator. In contrast with earlier results on such problems,
where only the asymptotics of the exponential rates is obtained, we compute the
precise pre-factors up to multiplicative errors that tend to 1 as T a 0. As an
example we treat the nearest neighbor Ising model on the 2 and 3 dimensional
square lattice. Our results improve considerably earlier estimates obtained
by Neves–Schonmann, (1) Ben Arous–Cerf, (2) and Alonso–Cerf. (3) Our results
employ the methods introduced by Bovier, Eckhoff, Gayrard, and Klein in
refs. 4 and 5.
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1. INTRODUCTION

Controlling the transitions from metastable states to equilibrium in the
stochastic dynamics of lattice spin systems at low temperatures has been
and still is a subject of considerable interest in statistical mechanics. The
first mathematically rigorous results can be traced back to the work of



Cassandro et al. (6) that initiated the so-called ‘‘path-wise approach’’ to
metastability. For a good review of the earlier literature, see in particular,
ref. 7. All the mathematical investigations in the subject require some small
‘‘parameter’’ that effectively makes the timescales for metastable phenom-
ena ‘‘large.’’ The somewhat simplest of these limiting situations is the case
when a system in a finite volume L … Zd is studied for small values of
the temperature T=1/b. In systems with discrete spin space one is then in
the situation where the dynamics can be considered as a small perturbation
of a deterministic process, a situation very similar to what Freidlin and
Wentzell (8) called ‘‘Markov chains with exponentially small transition prob-
abilities.’’ Consequently, most of the work concerning this situation (1, 2, 9–13)

can be seen as extensions and improvements of the large deviation approach
initiated by Freidlin and Wentzell. This consists essentially in identifying
the most likely path (in the sense of a sequence of transitions) and proving
a large deviation principle on path-space. While this approach establishes
very detailed information on, e.g., the typical exit paths from metastable
states, the use of large deviations methods entails a rather limited precision.
Results for, e.g., exit times y are therefore typically of the following type:
For any e > 0,

P(eb(D− e) < y < eb(D+e)) ‘ 1, as b ‘.

where D can be computed explicitly. Similarly, one has results on eigen-
values of the generator that are of the form

lim
b ‘.
b−1 ln li(b)=ci

with explicit expressions for the ci (see, e.g., refs. 8 and 14). From many
points of view, the precision of such results is not satisfactory, and rather
than just exponential rates, one would in many situations like to have
precise expressions that also provide the precise pre-factors. This is partic-
ularly important if one wants to understand the dynamics of systems with a
very complex structure of metastable states, and in particular disordered
systems. (For a rather dramatic illustration, see, e.g., refs. 15 and 16 where
aging phenomena in the random energy model are studied.) Another
drawback of the large deviation methods employed is that they are rather
heavy handed and require a very detailed knowledge of the entire energy
landscape, a requirement that frequently cannot be met. Sharper estimates
on eigenvalues are obtained by Miclo, (17) using a variational approach and
techniques inspired by the work of Holley, Kusuoka, and Strook (18) that
obtained estimates on the first eigenvalues only. In fact Miclo gave upper
and lower bounds on eigenvalues that differ only by a constant.
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In two recent papers (4, 5) a somewhat new approach to the problem of
metastability has been initiated aiming at improving the precision of the
results while reducing at the same time the amount of information neces-
sary to analyze a given model. To achieve this goal, the attempt to con-
struct the precise exit paths is largely abandoned, as are, to a very large
extent, large deviation methods.

The general structure of this approach is as follows. In ref. 5 the
notion of a set of metastable points is introduced. The definition of this set
employs only one type of objects, namely Newtonian capacities (which may
also be interpreted as escape probabilities). If such a set of metastable
points can be identified, (5) provides a general theorem that yields precise
asymptotic formula for the mean exit time from each metastable state,
shows that this time is asymptotically exponentially distributed (in a strong
sense), and states that each mean exit time is the inverse of one small
eigenvalue of the generator. While ref. 5 assumes reversibility of the
dynamics, in ref. 19 it is shown that similar results can be obtained in the
general case. Thus, the analysis of metastability is essentially reduced to
the computation of Newtonian capacities. The great advantage of such a
result is that capacities are particularly easy to estimate, due to the fact that
they verify a particularly manageable variational principle. This fact is well
known and has been exploited in the analysis of transience versus
recurrence properties of Markov chains (see, e.g., ref. 20); however, its
particular usefulness in the context of metastability seems to have been
noticed only in ref. 4 where it was used in the context of reversible discrete
diffusion processes motivated from certain mean field spin systems.

In this short paper we will show that the approach is even more effi-
cient and simple in the context of the zero temperature limit of Glauber
dynamics of spin systems in finite volume. We will show that capacities in
this limit can be computed virtually exactly in terms of properties of the
energy landscape, and therefore all interesting properties of the dynamics
can be inferred from a (not overly detailed) analysis of the energy land-
scape generated by the Hamiltonian considered. As a particular application
that should illustrate the power of our approach, we apply the general
results to the Ising model (in two and three dimension).

2. THE GENERAL SETTING AND THE MAIN THEOREM

In this section we set up the general context to which our results will
apply. It will be obvious that Glauber dynamics of finite volume spin
systems at low temperatures provide particular examples. We will consider
Markov processes on a finite state space W (the configuration space). To
define the dynamics, we need the following further objects.
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1. A connected graph G on W. We denote by E(G) the set of the edges
in G.

2. A HamiltonianH: WQ R also called energy.

3. The Gibbs measure Q(x) := 1
Z exp(−bH(x)), where Z is the nor-

malization factor called partition function, and b is the inverse temperature.

We consider transition probabilities P(x, y) such that if {x, y} ¥ E(G), P(x, y)
> 0, and P(x, y)=0 if x ] y and {x, y} ¨ E(G). We assume moreover that the
transition probabilities are reversible with respect to the Gibbs measure, i.e.,

Q(x) P(x, y)=Q(y) P(y, x) (2.1)

We will also make the simplifying assumption that any existing transition
in the graph is reasonably strong, i.e., we assume that there exists a con-
stant C > 0 such that3

3 The constant C will typically be of the order of the inverse of the maximum coordination
number of the graph G.

P(x, y)+P(y, x) \ C -{x, y} ¥ E(G) (2.2)

By reversibility, (2.2) is equivalent to

P(x, y) \
C

1+exp(−b(H(y)−H(x)))
-{x, y} ¥ E(G) (2.3)

To be able to state our results we need some further notations.

1. Given a one-dimensional subgraph w, we write w: xQ I if the
subgraph has one end in x and the other end in I. One dimensional
subgraphs have a natural parameterization w0,..., wK, where K :=|w|−1,
-k=0,..., K−1 {wk, wk+1} ¥ E(G) and w: w0 Q wK.

2. For A … W, let H2 (A) :=maxz ¥ A H(z). For x ¥ W and I … W, we
introduce the communication height, H1 (x, I), between x and I as

H1 (x, I) :=min
w: xQ I

H2 ({w}) (2.4)

Moreover we define the set of saddle points for x and I by

Sx, I :={z ¥ W; ,w: xQ I with z ¥ w and H(z)=H2 ({w})} (2.5)

3. For any set A … W, we define its outer boundary “A as the set of all
points in A from which an edge of G leads to its complement, Ac.
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4. Let us assume that the saddles z ¥Sx, I are isolated and simple,
namely, they are not connected to each other by an edge of the graph and
such that for any such z ¥Sx, I there existsw: zQ xwithH2 ({w}0z) < H(z).

Then, there exists a surface Z with the following properties:

(a) S :=Sx, I … Z

(b) ,d > 0 such that -z ¥ Z0S, H(z) \H(S)+d.

(c) Z is the outer boundary of a connected set D that contains x.

An example of such a surface is the outer boundary of the set

DIx :={z; H(Sz, x) < H(Sz, I)} (2.6)

5. With respect to this surface Z, for z ¥ Z, let p̌z :=;xŒ ¥ D P(z, xŒ)
and p̂z :=;yŒ ¥ W0D0z P(z, yŒ). We set

Cx, I := C
z ¥Sx, I

p̂zp̌z
p̂z+p̌z

(2.7)

It is immediate to see that different choices of Z give, up to errors of order
e−bd, the same value for Cx, I (as well as for p̌z and p̂z if z ¥Sx, I).

6. LetWx :={y; H(y) < H(x)}. For x ¥ W, we set C(x) :=H(Sx, Wx )−
H(x). If x is not a local minimum of the Hamiltonian, C(x)=0. If x is a
global minimum of the Hamiltonian, we set C(x)=..

7. For the process Xt starting at x, we define the hitting time to the
set I … W as yxI :=inf{0 < t ¥N; Xt ¥ I}.

8. We denote by M2 the set of all local minima of H. We call a subset
M …M2 a set of metastable states, if a point that realizes the absolute
minimum of H is contained in M and if, for all y ¥M2 0M, C(y) <
minx ¥M C(x). It is important to realize that for given H, M may often be
chosen in different ways. The idea will be that we will observe the process
only at its visits to M. Thus, the actual choice of M will depend on how
much information we want to retain about the detailed behavior of the
process. Note that this definition implies that for all z ¨M, H1 (z,M) \
H1 (z, Wz).4

4 Given a real parameter c, we can define the set M(c) as the set of all local minima x ¥M2

such that C(x) \ c. Obviously, M(c) …M(cŒ) if c \ cŒ.

9. Finally, for x ¥M, we need to define the quantity

Nx :=#{z ¥ W : {H(z)=H(x)} 5 {H1 (x, z) < H1 (x,M0x)}}

which represents the degeneracy of the minima of the Hamiltonian.
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We can now formulate the main general result of this paper in the
general setting. Let us consider some set M of metastable points. To be
able to formulate concise and general results, we make some further
assumptions that will be true for ‘‘generic’’ Hamiltonians.5

5 Note that for any Hamiltonian, one may select different sets of metastable points. The
requirements (h1) and (h2) depend on the Hamiltonian as well as on the choice of M. In the
case of the Ising model treated in Section 5, hypothesis (h1) is true only for M={− 1,+1}
(all minuses and all pluses), while hypothesis (h2) is true only if the magnetic field does not
assume certain values. If hypothesis (h1) or (h2) fails, the pre-factor in (2.8) does not assume
the simple form NxC

−1
x , but it is still possible to compute it by using our procedure.

(h1) For any x ] y ¥M, C(x) ] C(y).

(h2) For any x ] y ¥M, the saddles in Sx, y are isolated and simple.6

6 In the appendix we will explain how one can proceed to obtain comparable results in the
case when this condition is not satisfied.

Theorem 2.1. Let M be a set of metastable states for the Hamilto-
nian H satisfying the conditions (h1) and (h2) above. For x ¥M, set Mx :=
{y ¥M; H(y) < H(x)}=M 5Wx. Let y(x) :=yxMx , S :=Sx, Wx and Cx :=
Cx, Wx . Then there exists d > 0, independent of b, such that for any x ¥M,

(i)

Ey(x)=NxC
−1
x e

bC(x)(1+o(e−bd)) (2.8)

(ii) there exists an eigenvalue lx of 1−P such that

lx=
1

Ey(x)
(1+o(e−bd)) (2.9)

(iii) if fx is the right-eigenvector of P corresponding to lx, nor-
malized so that fx(x)=1, then

fx(y)=P(yyx < y
y
Mx
)+o(e−db) (2.10)

(iv) -t > 0

P(y(x) > tEy(x))=e−t(1+o(e
−bd))(1+o(e−bd)) (2.11)

In Section 5, we will apply Theorem 2.1 to a well known situation, the
kinetic Ising model, in the limit of vanishing temperature.

Let us anticipate our main result about the kinetic Ising model, referring
to Section 5 for precise definitions and notation.
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Theorem 2.2. Consider the kinetic Ising model with Metropolis
dynamics in dimension d=2 or d=3 in a torus Ld(l) with diameter l. The
magnetic field 0 < h < 1 will be chosen (depending on the dimension) such
that the genericity assumptions hold.

Then, the two configurations −1 (all minus spins) and +1 (all plus spins)
form a metastable set (if the magnetic field h is positive, +1 is stable), and

• In dimension 2, let h be such that 2/h is not an integer. Let a2 :=K2hL
and C2 :=4a2−h(a

2
2− a2+1) be the diameter and the activation energy of

the ‘‘critical droplet,’’ respectively. Then,

Ey(− 1)=
3
8
1
a2−1

ebC2(1+o(e−bd))=
3
16
hebC2(1+O(h)+o(e−bd)) (2.12)

• In dimension 3, let h be such that 2/h and (h/2 K4/hL (4/h+1−
K4/hL)) are not integer. Let a3 :=K4hL and a :=Kh/2 K4/hL (4/h+1− K4/hL)L
(notice that a can take the value 1 or 2). The activation energy of the
‘‘critical droplet’’ is

C3 :=(6a
2
3−(12−4a) a3+4a2+4−2a)−h(a

3
3−(3−a) a

2
3

+(2−a)+a22− a2+1)

Then,

Ey(− 1)=
a
16

1
(a3− a2+1)(a3− a2+a−1)(a2−1)

ebC3(1+o(e−bd))

=
a
128
h3ebC3(1+O(h)+o(e−bd)) (2.13)

Here as in Theorem 2.1, d > 0 is independent of b (but depends on arith-
metic properties of h).

Remark. Note that in our model we flip at most one spin per time
step. In continuous time dynamics the mean transition times would be
lowered by a factor 1/|L|.

The above Theorem shows how the results of Theorem 2.1 can be
applied (via the analysis of the energy landscape carried out for the Ising
model in refs. 1–3) to the so-called Freidlin–Wentzell regime. Notice that
the methods of ref. 5 can be applied in a very similar way to situations
where the volume grows with b to compute ‘‘exactly’’ the probability of
first appearance of a critical droplet (a preliminary problem for the infinite-
volume metastability carried out in ref. 21).
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3. BASIC TOOLS

Theorem 2.1 relies on Theorem 1.3 in ref. 5 that links relative capaci-
ties of metastable sets to mean exit times and to the low lying spectrum of
1−P. The additional work needed to prove Theorem 2.1 will be to estimate
capacities in terms of the Hamiltonian H, and to show that the hypotheses
of Theorem 1.3 in ref. 5 are satisfied in our setting.

Let us state Theorem 1.3 in ref. 5 specialized to our case.7

7 This Theorem is stated in ref. 5 in a context where the space and the metastable set depend
on the parameter b. The correspondence between the symbols in the two papers is the
following: NQ b, CN Q W, MN QM, eN Q exp(−b const.), Rx QN

−1
x , rN Q const., cN Q

const.

In their context, a set M ¥ W is called a set of metastable points in the
sense of ref. 5 if

supx ] y ¥M P(yxy < y
x
x)

infz ¥ W P(yzM [ yzz)
Q 0 as bQ. (3.1)

The set M is generic in the sense of ref. 5 if for any x, y ¥M, and I …
M0{x, y},

P(yxI < y
x
x)

P(yyI < y
y
y)

tends either to zero or to infinity, as b ‘., and if the
absolute minimum of the Hamiltonian is not degenerate.

Theorem 3.1 (Theorem 1.3 in ref. 5). Let M be a generic set of
metastable states in the sense of ref. 5, and let for x ¥M, Mx and y(x) be
defined as in Theorem 2.1. Then, for any x ¥M, the following holds:

(i)

Ey(x)=
Nx

P(yxMx < y
x
x)
(1+o(1)) (3.2)

(ii) for any x ¥M, there exists an eigenvalue lx of 1−P such that

lx=
1

Ey(x)
(1+o(1)) (3.3)

moreover, the eigenvalues of 1−P not corresponding to any x ¥M are in
the interval (c |W|−1 infz ¥ W P(yzM < y

z
z), 2] for some positive constant c.

(iii) if fx is the right-eigenvector of P corresponding to lx, nor-
malized so that fx(x)=1, then

fx(y)=P(yyx < y
y
Mx
)+o(1) (3.4)
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(iv) for any x ¥M, for any t > 0,

P(y(x) > tEy(x))=e−t(1+o(1))(1+o(1)) (3.5)

Here o(1) stands for a small error that depends only on the small param-
eters introduced via (3.1) and the non-degeneracy condition following it.

Theorem 2.1 will follow from Theorem 3.1 since in the finite-volume
and bQ. regime, we compute P(yxMx < y

x
x) and show that local minima of

the Hamiltonian are metastable states giving at the same time the value of
the nucleation rate in the limit bQ..

The key estimate is the following Lemma.

Lemma 3.2. -x, y ¥M2 such that Sx, y is a set of isolated single
points, -d > 0,

P(yxy < y
x
x)=Cx, ye−b(H(Sx, y)−H(x))(1+o(e−bd)) (3.6)

We will explain in the appendix how our method can be extended to
situations where the saddles are degenerate. In this case the pre-factor Cx, y
does not have the nice form in (2.7) but can still be computed explicitly in
terms of small ‘‘local variational problems.’’

Lemma 3.3. Let x be a minimum for the Hamiltonian. Then, the set
M :={y; C(y) \ C(x)} is a set of metastable state (in the sense of ref. 5).

Clearly, Theorem 2.1 immediately follows from Theorem 3.1, Lemma 3.2
and Lemma 3.3. Notice that hypothesis (h1) and Lemma 3.2 ensure that
the set M is generic in the sense of ref. 5.

4. PROOF OF LEMMATA 3.2 AND 3.3

In order to prove Lemmata 3.2 and 3.3, we make use of many ideas
contained in ref. 4.

The following Lemma corresponds to Theorem 6.1 in ref. 22.

Lemma 4.1 (Dirichlet representation). Let Hx
y :={h: WQ [0, 1];

h(x)=0, h(y)=1} and

F(h) :=
1
Z

C
xŒ, xœ ¥ W

e−bH(xŒ)P(xŒ, xœ)[h(xŒ)−h(xœ)]2 (4.1)
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Then,

e−bH(x)

Z
P(yxy < y

x
x)=

1
2

inf
h ¥H

x
y

F(h) (4.2)

Proof. See ref. 22, Chapter II.6. L

Note that the left-hand side of (4.2) has the potential-theoretic
interpretation of the Newtonian capacity of the point y relative to x (i.e.,
the electric charge induced on the grounded site x when the potential is set
to 1 on the site y). The Dirichlet form is just the electric energy, and the
minimizer hg is the equilibrium potential, with the probabilistic interpreta-
tion hg(z)=P(yzy < y

z
x). For an extensive treatment of potential theory in

the context of discrete Markov chains, see, e.g., ref. 23.
The strength of this variational representation comes from the mono-

tonicity of the Dirichlet form in the variables P(xŒ, xœ), expressed in the
next Lemma, known as Rayleigh’s short-cut rule (see Lemma 2.2 in ref. 4):

Lemma 4.2. Let D be a subgraph of G and let P4D denote the law of
the Markov chain with transition rates, for u ] v, defined by P2D(u, v) :=
P(u, v) I{{u, v} ¥ E(D)}. If x and y are vertices in D, then

P(yxy < y
x
x) \ P4D(y

x
y < y

x
x) (4.3)

Proof. The proof follows from Lemma 4.1 using the monotonicity
of the Dirichlet form in the transition probabilities and can be found in
ref. 4. L

The following Lemma corresponds to Lemma 2.5 in ref. 4 and is a well
known fact (see, e.g., ref. 20).

Lemma 4.3 (The one dimensional case). Let w be a one-dimen-
sional subgraph of G, K :=|w|−1 and let {wn}n: {0,..., K}Q W be such
that -n [K, {wn, wn−1} ¥ E(G)

P4w(y
w0
wK
< yw0w0 )=5 C

K−1

n=0

e−b(H(w0)−H(wn))

P(wn, wn+1)
6−1 (4.4)

Remark. Lemmata 4.2, 4.3 and (2.2) immediately give the following
bound: -xŒ, I s.t. SxŒ, I is made of simple points,
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P(yxŒI < y
xŒ
xŒ) \ 5 C

K−1

n=0

e−b(H(xŒ)−H(wn))

P(wn, wn+1)
6−1

\ C 5 C
K−1

n=0
(e−b(H(xŒ)−H(wn))+e−b(H(xŒ)−H(wn+1)))6

−1

\
C
2
e−b(H(SxŒ, I)−H(xŒ))(1−Ke−bd) (4.5)

for any choice of the subgraph w: xŒQ I having its maximum energy in
SxŒ, I. The constant C is the same as in (2.3), while d is a suitable constant
related to the energy gap among the saddle and the other points in the one-
dimensional subgraph.

Proof of Lemma 3.2. Let C :=H(Sx, y)−H(x).
We consider the surface Z :=“Dyx .
We setDx :=D

y
x,Dy :=W0(Z2Dx),Z− :=“Z5Dx andZ+ :=“Z5Dy.

(1) The upper bound.

We use Lemma 4.1 with h(xŒ) :=0 if xŒ ¥ Dx and h(yŒ) :=1 if yŒ ¥ Dy;
we choose h(z) for z ¥ Z in an optimal way.

We have

P(yxy < y
x
x) [

ZebH(x)

2
F(h)

=C
z ¥ Z
e−b(H(z)−H(x))(p̌zh2(z)+p̂z(1−h(z))2)+o(e−bd) (4.6)

where we used reversibility. The small error comes from the mismatch on
the boundary of Dx that lies higher than the saddle hight.

The quadratic form p̌h2+p̂(1−h)2 has a minimum for h= p̂
p̂+p̌ . Hence,

we can saturate the inequality (4.6) and get

(l.h.s. of (4.6)) [ Cx, ye−bC(1+e−bd) (4.7)

(2) The lower bound.

We consider the subgraph D obtained by cutting all the connections to
the vertices in Z0S.

We use Lemma 4.2 to bound the original process by the restricted
process.

We use (4.5) to estimate the probability to reach xŒ ¥ Z− and the
probability to go from yŒ ¥ Z+ to y:
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By the strong Markov property at time yxS, we have

P4D(y
x
y < y

x
x)= C

z ¥S

P4D(y
x
z [ y

x
S 2 x) P4D(y

z
y < y

z
x)

=e−bC C
z ¥S

P4D(y
z
x < y

z
S) P4D(y

z
y < y

z
x) (4.8)

where we used reversibility.
Now,

P4D(y
z
x < y

z
S)= C

xŒ ¥ Z−
P(z, xŒ) P4D(y

xŒ
x < y

xŒ
S) (4.9)

We bound the last factor using a standard renewal argument (see, e.g.,
ref. 4, Corollary 1.6) that yields if zŒ ¥ Dx the last term is exponentially
close to 1:

P4D(y
xŒ
S < y

xŒ
x )=

P4D(y
xŒ
S < y

xŒ
x 2 xŒ)

P4D(y
xŒ
x 2S < y

xŒ
xŒ)

[
e−bC; z ¥S P4D(y

z
xŒ < y

z
x 2S)

P4D(y
xŒ
x < y

xŒ
xŒ)

[
|S| e−bC

Ce−b(C−dŒ)(1−e−bdŒ)
[ e−bd (4.10)

where we used (4.5). By putting together (4.9) and (4.10) we get

P4D(y
z
x < y

z
S) \ p̌z(1−e

−bd) (4.11)

We use the same procedure to bound the last term in (4.8):

P4D(y
z
y < y

z
x) \ C

yŒ ¥ Z+
P(z, yŒ) P4D(y

yŒ
y < y

yŒ
x ) (4.12)

Again, the same arguments leading to (4.10) show that the last term in this
sum is exponentially close to 1:

P4D(y
yŒ
x < y

yŒ
y ) [

|S| e−b(H(z)−H(yŒ))

e−b(H(Sy, yŒ)−H(yŒ))(1−e−bdŒ)
[ e−bd (4.13)

We put together (4.12) and (4.13) and get

P4D(y
z
y < y

z
x) \

p̂z
p̂z+p̌z

(1−e−bd) (4.14)
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Going back to (4.8), we get from (4.11), (4.14)

P4D(y
x
y < y

x
x) \ Cx, ye−bC(1−e−bd) L (4.15)

Proof of Lemma 3.3. For any z ¨M we know that by definition
of M, we have that C(z) <minx ¥M C(x) — C. In view of Lemma 3.2 and
the lower bound (4.5) we only need to show that this implies thatH1 (z,M)−
H(z) < C. Now let u ¨M be the point that realizes the minimum of the
energy among the states such that H1 (z, u) < H1 (z,M) so that H1 (u, Wu) \
H1 (z,M). Moreover, since u ¨M, H1 (u, Wu)−H(u)=C(u) < C. Hence,
H1 (z,M)−H(z) [H1 (u, Wu)−H(u) < C, and we are done. L

5. THE ISING CASE

In this section we want to illustrate the strength of Theorem 2.1 in a well
known context, namely the stochastic Ising model on the d-dimensional
lattice. In this case the state space is W={−1,+1}L, where L=L(L) is a
torus in Zdwith side-lengthL. For s ¥ W, the Hamiltonian is then given by

H(s) —HL(s)=−
1
2 C
Oi, jP ¥ L

sisj−h C
i ¥ L
si (5.1)

where the first sum concerns all the pairs of nearest neighbor sites in L.
Let s i be the configuration that differs from s only in the value of the

spin of site i and [a]+ denote the positive part of the real number a. We
will consider for definiteness only the case of the Metropolis dynamics, i.e.,
the transition probabilities are chosen

P(s, sŒ)=
e−b[H(sŒ)−H(s)]+

|L|
, if sŒ=s i, i ¥ L (5.2)

P(s, s)=1− C
i ¥ L
P(s, s i) (5.3)

and all others are zero.
We will use the estimate given in Theorem 2.1 to analyze this dynamics

in a finite volume L, under a positive magnetic field, in the limit when
b ‘..

Let −1 and +1 be the configurations full of minuses or full of pluses,
respectively. We will show in Lemma 5.2 that {−1,+1} is a set of meta-
stable states. Apart from this characterization, we will only use the
description of the energy landscape given in refs. 1–3 and 13 in dimension
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2, 3 or larger, respectively. We will show that the methods of Theorem 2.1
allow to improve the known estimates without requiring further analysis of
the energy landscape. In dimension 2 and 3, the improvement amounts to
the computation of the exact (including the pre-factor C− 1,+1) asymptotic
value of the expected transition time y−+ needed to reach +1 starting from
− 1 (that by Theorem 3.1 is the inverse of the spectral gap of P). In higher
dimension, where our knowledge of the energy landscape is not so detailed,
we cannot compute the pre-factor but we show that it is a constant inde-
pendent of b, while previous results only gave sub-exponential bounds.

We remark that, unlike the exponential factor exp(−bC(− 1)) (that
only depends on the graph structure), the pre-factor C− 1,+1 is related to the
particular Glauber dynamics we choose.

We set a1 :=1 and, for d \ 2,

ad :=!
2(d−1)
h
" (5.4)

ed :=ad−
2(d−1)
h and

ad :=!1d−1+
h
2
ed 2 (1− ed)" ¥ [1, d−1] (5.5)

A d-dimensional parallelepiped with a sides of length a and all the other
(d−a) sides with length a−1 is called quasi-cube in dimension d with
parameters (a, a) (called side-length and shape, respectively).

We say that h is generic if 0 < h < 1, for all 2 [ k [ d, 2(k−1)h and (k−1+
h
2 ek)(1− ek) are not integer. The following results hold for generic h. Given
a d-dimensional parallelepiped (l1×l2 · · · × ld) and a (d−1)-dimensional
configuration gd−1 ¥ {−1, 1} (l2 × l3 · · · × ld), let us consider a configuration
where the sites in the parallelepiped as well as the sites of the form
(l1+1, i2,..., id) where gd−1(i2,..., id)=+1 have plus spin and all other sites
have minus spins. For such a configuration, as well as for all its rotations
and translations, we say that gd−1 is attached to the parallelepiped.

Following ref. 13, we introduce a set Bd(v) in a recursive way: let
B1(v) be the set of configurations where the pluses form a slab with volume v,
Bd(v) is defined as the set of all configurations with v pluses that form
a d-dimensional quasi-cube with maximal volume vŒ [ v with a (d−1)-
dimensional configuration g ¥Bd−1(v−vŒ) attached to one of its largest
faces. Heuristically, these configurations are as close as possible to a cube.
It is easy to see that the energy is constant in every set Bd(v); we will
denote this energy by H(Bd(v)).

We make use of the following Theorem
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Theorem 5.1 (Theorem 3 in ref. 13). In the whole d-dimensional
lattice Zd, Bd(v) is a subset of the minimizers of the Hamiltonian in the
manifold with volume v.

This result can be transported to the torus L(L) only for sufficiently
small values of v/Ld. For large values of v, the boundary conditions affect
the shape of the minimizing configurations. Letm :=min{v \ 1; H(Bd(v)) [
H(− 1)}. We take L so large that the configurations in Bd(v) are minima
of the energy among the configurations with v pluses for all v [ m. Clearly,
such an L exists and is smaller than m+1, since the number of pluses in the
configurations winding around the torus is at least L. Hence, all configu-
rations in the torus with less than L pluses have a corresponding configu-
ration in Zd with the same volume and the same energy.

We define the set Ba d of the candidate saddles in dimension d in a
recursive way:

1. in one dimension it is the set of configurations consisting of a
single plus spin in the sea of minuses.

2. in dimension d it is the set of configurations in which the pluses
form a quasi-cube with parameters (ad, ad) with a (d−1)-dimensional
candidate saddle attached on one of its squared (d−1)-dimensional faces.

Notice that H(Ba d)=maxv [ Ld H(Bd(v)).
Clearly, all the candidate saddles have the same volume vgd and are

in Bd(vgd). Moreover, each g ¥Bd(v) is connected to a configuration in
Bd(v+1) and to one configuration in Bd(v−1).

Hence, the candidate saddles are saddles between − 1 and +1 since
from any candidate saddle there exist a path leading to − 1 and a path
leading to +1 both reaching their maximum energy in the starting point.

The following lemma was communicated to us by E. Olivieri. (24)

Lemma 5.2. The set M :={− 1,+1} is a metastable set.

Proof. We have to show that for some d > 0, for any s ¨ {− 1,+1},
C(s) < C(− 1), i.e., there exists a configuration sŒ such that

1. H(sŒ) < H(s)−d
2. H1 (s, sŒ)−H(s) < H1 (− 1,+1)−H(− 1)−d.

For g ¥ W, let |g| and ^(g) be the number of pluses and the number of
pairs of nearest neighbors with different spin (namely, the perimeter, or
cardinality of the contour), respectively. It is a well known fact that the
Hamiltonian of the Ising model can be written as

H(g)=1
2 C
Oi, jP ¥ L

|gi−gj |−h |g|+H(− 1)=^(g)−h |g|+H(− 1) (5.6)
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Let m :=min{k \ 1; ,g with |g|=k and H(g) [H(− 1)}. Let w: − 1 Q +1
be a monotone one-dimensional subgraph such that wk ¥Bd(k) that
reaches its maximal energy in S(− 1,+1). Clearly, H(wm) [H(− 1). Let
s 2 g denote the configuration where (s 2 g)(x) :=s(x)Kg(x) and s 5 g
denote the configuration where (s 5 g)(x) :=s(x)Ng(x).

A simple computation shows that

^(s)+^(g) \^(s 2 g)+^(s 5 g) (5.7)

Indeed, let us assume without loss of generality that si \ max{sj, gi, gj};
then

|si−sj |+|gi−gj | \ |(s 2 g)i−(s 2 g)j |+|(s 5 g)i−(s 5 g)j | (5.8)

where the equality clearly holds if gj [ sj or gj [ gi, while for gj >
max{sj, gi},

|si−sj |+|gi−gj |=si+gj−sj−gi

=|si−gj |+|gi−sj |+2(gj−max{sj, gi})

=|(s 2 g)i−(s 2 g)j |+|(s 5 g)i−(s 5 g)j |

+2(gj−max{sj, gi}) (5.9)

Since s is neither +1 nor − 1, there exists at least one pair of nearest
neighbour sites i, j such that s(i)=−1 and s(j)=+1. By translation
invariance we may assume that the first site with a plus spin in the sequence
wk is i and the second is j. Thus in the first step, s 5 w1 ] − 1 and
H(s 2 w1)−H(s) < H(w1)−H(− 1), while in the second step s 2 w2=
s 2 w1, so that |s 5 wk | < k for all k \ 2. We choose sŒ=s 2 wm.

In order to prove point 2, we notice that for k [ m,

H(s 2 wk)−H(s)=^(s 2 wk)−^(s)−h(|s 2 wk |− |s|)

[^(wk)−^(s 5 wk)−h(|wk |− |s 5 wk |)

=H(wk)−H(s 5 wk) < H(wk)−H(− 1) (5.10)

since by definition, |s 5 wk | < m.
For k=m, from (5.10) we get point 1, since

H(s 2 wm)−H(s) < H(wm)−H(− 1) [ 0 (5.11)
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By putting together (5.11) and (5.10), we see that the energy of the config-
uration sŒ is lower than the energy of s and that the maximal energy in the
one-dimensional subgraph s 2 wk: sQ sŒ is lower than H1 (− 1,+1). L

In the next Theorem, we use the results of refs. 1 and 2 (Theorem 6.18,
7.17) to describe the energy landscape.

Theorem 5.3 (from refs. 1 and 2). In dimension 2 and 3,

1. The set of saddles between − 1 and +1 coincides with the set of
candidate saddles.

2. The saddles are isolated.
3. If h is generic, the saddles are simple.

Conjecture 5.4. Theorem 5.3 holds in any dimension.

We define D+ as the set of all states that are larger than a candidate
saddle (namely of the form s 2 g ] s for some candidate saddle s). By the
same procedure of the proof of Lemma 5.2, we can easily see that all con-
figurations in D+ have the saddle with +1 below the saddle with − 1. We
set Z :=“D+ and D− :=W0(D+ 2 Z). Clearly, if Conjecture 5.4 holds
(as in dimension 2 and 3) Z fulfills the conditions (a), (b) and (c) and the
computation of C− 1,+1 with respect to this surface gives the pre-factor of
the expected transition time from − 1 to +1. In the following Lemmata,
we will compute this quantity.

Lemma 5.5. The number of distinct tiles with the shape of a
d-dimensional quasi-cube with parameters (l, a) contained in a box with
the shape of a d-dimensional quasi-cube with parameters (L, b), where
L \ l is:

Ndl, a(L, b)= C
min{a, b}

k=[a+b−d]+

1k
b
2 1a−k
d−b
2 (L−l+1)d−a−b+2k

×(L−l)a−k (L−l+2)b−k (5.12)

The number of distinct tiles with the shape of a d-dimensional quasi-cube
with parameters (l, a) contained in a torus with side-length L \ l is:

N2 dl, a(L, b)=1
a
d
2 Ld (5.13)

Proof. The proof is rather straightforward: let k be the number of
long sides of the tile that are parallel to long sides of the box. The number
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of long sides of the tile that are parallel to short sides of the box is a−k;
the number of short sides of the tile that are parallel to long sides of the
box is b−k; the number of short sides of the tile that are parallel to short
sides of the box is d−a−b+k. Obviously, [a+b−d]+ [ k [ min{a, b}.
There are (kb) ways to arrange k long sides of the tile parallel to the b long
sides of the box and (a−kd−b) ways to arrange the remaining a−k long sides of
the tile parallel to the d−b short sides of the box. The last three factors in
(5.12) come from the possible translations of the tile in the box.

Similarly, we can prove (5.13). L

Let Nd :=Ndad, ad+1(ad+1, ad+1) for d \ 3 and N2 :=a2.

Lemma 5.6. The number of candidate saddles in dimension d con-
tained in a d-dimensional quasi-cube Ll, b with parameters (l, b), where
l \ ad is

Nd(l, b)=Ndad, ad+1(l, b) 2
d−2 D

d

k=2
(ak+1) Nk (5.14)

All the candidate saddles have p̌=|Ll, b |−1, while p̂ can take the value
|Ll, b |−1 or 2 |Ll, b |−1. The fraction of candidate saddles with p̂=|Ll, b |−1 is 2

a2
,

independently of d, b and l.

Proof. Let Nd :=Nd(ad, ad+1).
The key observation is that the pluses of a candidate saddle are con-

tained in exactly one quasi-cube with parameters (ad, ad+1).
By Lemma 5.5,

Nd(l, b)=Ndad, ad+1(l, b)N
d (5.15)

Given a quasi-cube with parameters (ad, ad+1), there are 2(ad+1) possible
choices for the incomplete face and Nd−1(ad) ways to arrange the (d−1)-
dimensional candidate droplet on this face.

Hence,

Nd=2(ad+1)Nd−1(ad, ad)=2(ad+1) N
d−1
ad−1, ad−1+1(ad, ad)N

d−1

=2(ad+1) Nd−1Nd−1 (5.16)

For d=2, a2 can only take the value 1. Since N1=1, by (5.15), (5.16),
we get

N2(l, b)=4N2a2, 2(l, b) N
1
1, 1(a2, b)=4a2(l− a2+1)

b (l− a2)2−b (5.17)

By induction on d, we get (5.14).
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The computation of the number md(l, b) of candidate saddles with
p̂=|Ll, b |−1 is very similar: In dimension two, m2(a2, 1)=8, i.e., the number
of configurations made of a quasi-square plus a protuberance at one end of
one of the longest sides. All other candidate saddles have p̂=2 |Ll, b |−1,
since there are two neighbors of the protuberance that can be occupied.
All candidate saddles have p̌=|Ll, b |−1, since we can void the protuberance
and reach a configuration in D− . In general, for d > 1, the only sites with d
plus-neighbors are in an incomplete face of the tile with parameters
(ad, ad+1) that contains the critical droplet. Hence, md(ad, b) is equal to
the number of (d−1)-dimensional tiles with parameters (ad−1, ad−1+1) on
one of the largest faces of the d-dimensional critical quasi-cube times
md−1(ad−1, ad−1+1) namely,md(ad, ad)=2(ad+1) Nd−1md−1(ad−1, ad−1+1).
On the other hand, md(l, b)=Nad, ad+1(l, b) md(ad, ad+1). Thus, the ratio
md(l, b)/Nd(l, b) does not depend on d, b or on l and is equal to 2/a2. L

Lemma 5.7. The number of candidate saddles in dimension d con-
tained in a d-dimensional torus of side-length l \ ad is

N2 d(l)=1ad+1
d
2 ld2d−1 D

d

k=2
(ak+1) Nk−1 (5.18)

In particular, for d=2,

N2 2(l)=4l2a2=
8
h
(1+O(h)) l2 (5.19)

for d=3,

N2 3(l)=
24
a3
l3a2(a3− a2+1)a3 (a3− a2)2−a3=

192
a3

1
h3
(1+O(h)) l3 (5.20)

All the candidate saddles have p̌=l−d, while p̂ can take the value l−d or
2l−d. The fraction of candidate saddles with p̂=l−d is 2

a2
, independently of d

and l.

Proof. The proof is very similar to that of Lemma 5.6.
By Lemma 5.5, we get

N2 d(l)=N2 dad, ad+1(l)N
d=1ad+1

d
2 ldNd (5.21)

and, from Lemma 5.6, we get the thesis.
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In particular, the result for d=2 comes from N2=4a2, a2=1. The
approximation comes from a2=2/h(1+O(h)).

For d=3, from (5.17) and (5.21), we have

N2 3(l)=l38 1a3+1
3
2 (a3+1) l2( a3− a2+1)a3 (a3− a2)2−a3 (5.22)

since, for a3 ¥ (1, 2), (
a3+1
3 )(a3+1)=6/a3, we get (5.20).

By using the approximation a3− a2+1=(a3− a2)(1+O(h))=a2(1+
O(h)) 2h (1+O(h))we get the estimate in (5.20).

The computation of the fraction of saddles with p̌=l−d is the same as for
Lemma 5.6. L

Let

Cd :=2 C
d

k=2
(2aka

ak −1
k (ak−1)d−ak+2(d−ak) a

ak
k (ak−1)

d−ak −1

−h(aakk (ak−1)
d−ak))+2−h (5.23)

be the activation energy of the candidate saddle in dimension d.

Theorem 5.8. For the Ising model on a (sufficiently large) d-dimen-
sional torus L(l), in dimension d > 3, there exists a constant cd such that
-d > 0,

Ey−+=cde
bCd(1+o(e−bd)) (5.24)

If h is generic and Conjecture 5.4 holds, then the pre-factor cd is equal to

3
2
a2

a2−1
1

N2 d(l)
ld=
3
2
a2

a2−1
1

1ad+1
d
2Nd

(5.25)

Proof of Theorems 2.2 and 5.8. The results of Theorem 2.2 are
straightforward consequences of Theorem 2.1, Lemma 5.3, Lemma 5.2, and
Lemma 5.7. In higher dimension, the corresponding result comes from
Theorem 2.1 and Lemma 5.2. If Conjecture 5.4 holds, as in dimension 2
and 3, Lemma 5.7 gives (5.25). L

In conclusion, let us notice that the form of the quantities P(yxy < y
x
x)

in the case of the Metropolis dynamics may offer an interpretation in terms
of ‘‘free energy of the set of saddle points.’’ Indeed, every point in Z gives a
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contribution to the pre-factor Cx, y that does not depend on b and can be
bounded by a constant c. With the arguments in the proof of Lemma 3.2,
we get

P(yxy < y
x
x) ’ cNe

−bC=c exp(−b(C−T log N)) (5.26)

where N is the number of saddles between x and y and T=b−1. The
logarithm of N can be interpreted as an entropy. This interpretation could
be related to the results by Schonmann and Shlosman (25) on the connec-
tions between Wulff droplets and the metastable relaxation of kinetic Ising
model.

6. APPENDIX

In this appendix we briefly explain how our general approach can be
generalized to situations when the saddles are more complicated than the
isolated single points assumed in Section 2. The point we want to make is
that in such a case it is still possible to localize the problem to the under-
standing of the neighborhood of the saddle points and to thus reduce the
analysis of the capacities to a ‘‘local’’ variational problem. We will be very
brief; a more detailed presentation will be given in forthcoming papers. Let
us consider a situation when in the computation of a transition from x to y
we encounter a set of saddles Sx, y that can be decomposed into a collection
of disconnected subsets S (k), k=1,..., L. By definition, it must be true that
each of the sets S (k) is connected to two subsets R (k) and N (k) of Dyx and
Dxy, respectively. Let us define

C(k) := C
i ¥N

(k)
e−b(H(x)−H(i))P4(y iR(k) < y

i
N
(k)) (6.1)

where P4 is the law of the chain where all the edges exiting from the sets S (k)

not leading to N(k) or R (k) are cut. Note that it is not difficult to see that

C (k)= inf
h ¥H

R
N

F2(h) (6.2)

Repeating the steps of the proof of Lemma 4.2, one obtains then that

Lemma 6.1. In the situation described above we have that

P(yxy < y
x
x)=C

L

k=1
C (k)(1+o(e−bd)) (6.3)
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